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\begin{abstract}
The MinRank problem is the basis for much of our understanding of the complexity of solving large systems of structured multivariate quadratic equations.  In this article we derive an exact upper bound on the complexity of quite overdetermined instances of MinRank that doesn't depend on any heuristic.  Such systems with a low MinRank are effectively the only ones possible in multivariate cryptography, thus the complexity bound has practical value.
\end{abstract}
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\section{Introduction}

The MinRank problem has emerged as a central technique in the resolution of large systems of structured multivariate equations.  Examples of practical instances of systems of equations solvable by way of MinRank include many cryptanalyses of multivariate public key cryptosystems, see, for example, \cite{KipnisShamir:relin,DBLP:journals/dcc/BettaleFP13,DBLP:conf/pqcrypto/MoodyPS14,DMRPDCST,JVDCST,DCDCSTJV, DBLP:conf/asiacrypt/GoubinC00}.  There is thus tremendous practical value to the effective computation of MinRank.

Previous work investigating the complexity of the MinRank problem includes \cite{DBLP:conf/issac/FaugereDS10}.  The article addresses the general problem, but the most practically important case--- practical in the sense that the result is relevant to cryptanalytic problems--- is solved only under a conjecture related to the Fr\"oberg conjecture of \cite{Froberg}.

We define a category of overdefined MinRank instances, called \emph{superdefined}.  This category includes the vast majority of MinRank instances relevant to cryptanalyses of multivariate public key cryptosystems, and in particular, all of the examples cited above.
%e.g. \cite{DBLP:conf/pqcrypto/TaoDTD13, Dingrainbow, DBLP:conf/ctrsa/PatarinCG01}.
%I decided that there was no point in citing examples of MinRank problems in multivariate cryptanalysis twice. I also added TTM/Rainbow as an example above.  
We provide an upper bound on the complexity of superdefined instances of MinRank free from any qualifying assumptions or conjectures.  In particular, we compute the exact Hilbert regularity of such MinRank systems.

\section{The MinRank Problem}

\begin{Def}
The MinRank problem with parameters $(n,r,k)$ over a field $\kk$ is the problem of constructing with input $\mathbf{M}_1,\ldots,\mathbf{M}_k\in\mathcal{M}_{n\times n}(\kk)$ a nonzero $\kk$-linear combination satisfying:
\[
\mbox{Rank}\left(\sum_{i=1}^ka_i\mathbf{M}_i\right)\leq r.
\]
\end{Def}
The complexity of the MinRank problem in general is clearly bounded by the complexity in the case that the minimum rank of any nonzero $\kk$-linear combination is exactly $r$; thus, we generally assume that the nonzero matrix of minimum rank in the span of the $\mathbf{M}_i$ has rank exactly $r$.

One may consider the matrix
\[
\overline{\mathbf{M}}=\sum_{i=1}^kt_i\mathbf{M}_i,
\]
whose entries are in $\kk[T]=\kk[t_1,\ldots,t_k]$.  The Kipnis-Shamir modeling of this MinRank problem, see \cite{KipnisShamir:relin} constructs a basis for the right kernel of $\overline{\mathbf{M}}$ of the form
\[
\mathbf{K}=\left[\begin{matrix}
1 & 0 & \cdots & 0\\
0 & 1 & \cdots & 0\\
\vdots & \vdots & \ddots & 1\\
v_{1,1} & v_{1,2} & \cdots & v_{1,n-r}\\
\vdots & \vdots & \ddots & \vdots\\
v_{r,1} & v_{r,2} & \cdots & v_{r,n-r}\\
\end{matrix}\right]
\]
using $r(n-r)$ new variables $v_{i,j}$.  Then the relation $\overline{\mathbf{M}}\mathbf{K}=\mathbf{0}_{n\times n-r}$ produces $n(n-r)$ equations in $k+r(n-r)$ variables in the polynomial ring $\kk[T,V]=\kk[t_1,\ldots,t_k,v_{1,1},\ldots,v_{r,n-r}]$. Under the condition that for no fixed nonzero $(t_1,\ldots,t_k)$ is the rank of $\overline{\mathbf{M}}$ less than $r$, the representation of $\mathbf{K}$ in column echelon form is unique, if existant; thus, the solution space is zero dimensional for all nonzero $(t_1,\ldots,t_k)$. We may therefore link the under and overdetermination of the MinRank problem to that of the corresponding Kipnis-Shamir modeling. consequently, we define a MinRank problem to be \emph{underdetermined} if $k>(n-r)^2$, \emph{well-determined} if $k=(n-r)^2$ and \emph{overdetermined} if $k<(n-r)^2$.  

\section{Minors Modeling in the General Case}

One approach to the solution of the MinRank problem is known as minors modeling.  Let $I$ be the ideal in $\kk[T]$ generated by the $(r+1)\times (r+1)$ minors of $\overline{\mathbf{M}}$.  Any element of $V(I)\cap\kk^k$ is clearly a solution to the MinRank problem over $\kk$.

The number of $(r+1)\times (r+1)$ minors in $\overline{\mathbf{M}}$ is ${n\choose r+1}^2$; however, since every minor is homogeneous of degree $r+1$ and there are only ${k+r\choose r+1}$ degree $r+1$ monomials, there can be at most 
\[
q=\min\left({k+r\choose r+1},{n\choose r+1}^2\right)
\]
\emph{linearly} independent generators of $I$.  For MinRank instances with $(n-r)^2<q$, these generators are algebraically dependent.

In the following, we focus on the overdetermined case $k<(n-r)^2$.  In \cite[Corollary 4]{DBLP:conf/issac/FaugereDS10}, the Hilbert regularity of $I$ is shown to be bounded by $r(n-r)+1$ via a derivation of the Hilbert Series of $\kk[T]/I$ obtained with the aid of a variant of the Fr\"oberg Conjecture.  In many applications it has been shown that the regularity is $r+1$ via the same analysis, see \cite{DBLP:journals/dcc/BettaleFP13,DCDCSTJV}, for example.

Among these overdetermined instances of MinRank is a special class, in which $q={k+r\choose r+1}$.  We refer to such instances as \emph{superdetermined}.  (If we consider the symmetric MinRank problem, in which the matrices are all symmetric, then we say that the instance is superdetermined if ${k+r\choose r+1}\leq{n\choose r+1}/2$).  In particular, the instances of MinRank arising in cryptography, which we may always consider to be symmetric instances, are all superdetermined.  This is due to the fact that the hard instances of multivariate quadratic systems of equations have a number of equations proportional to the number of variables whereas a system is superdetermined merely if the number of equations $k$ is bounded by a quadratic function of the number of variables $n$, as proven in the following proposition.

\begin{Prop}
A MinRank problem with parameters $(n,r,k)$ over the field $\kk$ is superdetermined if $k\leq\frac{(n-r)^2}{r+1}-r$.
\end{Prop}
\begin{proof}
Let $k\leq\frac{(n-r)^2}{r+1}-r$.  First, we note that
\[
2(r+1)!^2{k+r\choose r+1}=2(r+1)!(k+r)(k+r-1)\cdots k\leq 2(r+1)!(k+r)^{r+1}.
\]
Next, since $2(r+1)!\leq(r+1)^{r+1}$ when $r\geq 1$, we have that
\[
2(r+1)!^2{k+r\choose r+1}\leq\left[(r+1)(k+r)\right]^{r+1}.
\]
Since $k\leq\frac{(n-r)^2}{r+1}-r$, then
\[
(r+1)(k+r)\leq(n-r)^2,
\]
and so
\[
\left[(r+1)(k+r)\right]^{r+1}\leq(n-r)^{2(r+1)}
\]
Since $(n-r)^{2(r+1)}<n^2(n-1)^2\cdots(n-r)^2=(r+1)!^2{n\choose r+1}^2$,
we obtain
\[
2{k+r\choose r+1}<{n\choose r+1}^2.
\]
\end{proof}

A generic superdetermined MinRank instance has a straightforward structure.  We derive the exact Hilbert regularity for generic superdetermined systems.

\begin{Thm}
Let $(\mathbf{M}_1,\ldots,\mathbf{M}_k)$ be a generic superdetermined instance of MinRank with parameters $(n,r,k)$ over the field $\kk$.  Let $\overline{\mathbf{M}}=\sum_{i=1}^kt_i\mathbf{M}_i\in\mathcal{M}_{n\times n}(\kk[T])$.  Let $I$ be the ideal generated by the $r+1\times r+1$ minors of $\overline{\mathbf{M}}$.  Then the Hilbert Series of $\kk[T]/I$ is
\[
HS(t)=\sum_{d=0}^r{k+d-1\choose d}t^d.
\]
Consequently, the Hilbert regularity of $I$ is $r+1$.
\end{Thm}
\begin{proof}
Consider $\mathcal{A}=\kk[T]$ as a graded algebra,
\[
\mathcal{A}=\bigoplus_{d\geq 0}\mathcal{A}_d,
\]
graded by total degree.  Since there are ${k+r\choose r+1}$ monomials of total degree $r+1$ and the linear span of the minors of a generic superdetermined MinRank instance is ${k+r\choose r+1}$ dimensional, there is a set of ${k+r\choose r+1}$ minors of $\overline{\mathbf{M}}$ that forms a basis of $\mathcal{A}_{r+1}$.  Thus the homogeneous ideal $I$ can be written
\[
I\approx \mathbf{0}\oplus \cdots\oplus \mathbf{0} \oplus \mathcal{A}_{r+1}\oplus\mathcal{A}_{r+2}\oplus\cdots.
\]
Thus, the quotient $\kk[T]/I$ as a graded algebra satisfies
\[
\kk[T]/I\approx \bigoplus_{d=0}^r\mathcal{A}_d.
\]
Since $\text{dim}_{\kk}(\mathcal{A}_d)={k+d-1\choose d}$ for $0\leq d\leq r$--- with the convention that ${0\choose 0}=1$--- the Hilbert Series of $\kk[T]/I$ is
\[
HS(t)=\sum_{d=0}^r{k+d-1\choose d}t^d.
\]
Since the Hilbert Series is a polynomial of degree $r$, the Hilbert regularity is $r+1$.
\end{proof}
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\begin{abstract}
The MinRank problem is the basis for much of our understanding of the complexity of solving large systems of 
structured multivariate quadratic equations.  In this article we derive an exact upper bound on the complexity of quite 
overdetermined instances of MinRank that doesn't depend on any heuristic.  Such systems with a low MinRank are 
effectively the only ones possible in multivariate cryptography, thus the complexity bound has practical value.
\end{abstract}
\Quiwords{MinRank, Hilbert Series, Hilbert Regularity, Rank Defect}

\section{Introduction}

The MinRank problem has emerged as a central technique in the resolution of large systems of structured multivariate 
equations.  Examples of practical instances of systems of equations solvable by way of MinRank include many 
cryptanalyses of multivariate public key cryptosystems, see, for example, 
\cite{KipnisShamir:relin,DBLP:journals/dcc/BettaleFP13,DBLP:conf/pqcrypto/MoodyPS14,DMRPDCST,JVDCST,DC
DCSTJV, DBLP:conf/asiacrypt/GoubinC00}.  There is thus tremendous practical value to the effective computation of 
MinRank.

Previous work investigating the complexity of the MinRank problem includes \cite{DBLP:conf/issac/FaugereDS10}.  
The article addresses the general problem, but the most practically important case--- practical in the sense that the result 
is relevant to cryptanalytic problems--- is solved only under a conjecture related to the Fr\"oberg conjecture of 
\cite{Froberg}.

We define a category of overdefined MinRank instances, called \emph{superdefined}.  This category includes the vast 
majority of MinRank instances relevant to cryptanalyses of multivariate public key cryptosystems, and in particular, all 
of the examples cited above.
%e.g. \cite{DBLP:conf/pqcrypto/TaoDTD13, Dingrainbow, DBLP:conf/ctrsa/PatarinCG01}.
%I decided that there was no point in citing examples of MinRank problems in multivariate cryptanalysis twice. I also 
added TTM/Rainbow as an example above.  
We provide an upper bound on the complexity of superdefined instances of MinRank free from any qualifying 
assumptions or conjectures.  In particular, we compute the exact Hilbert regularity of such MinRank systems.

\section{The MinRank Problem}

\begin{Def}
The MinRank problem with parameters $(n,r,k)$ over a field $\kk$ is the problem of constructing with input 
$\mathbf{M}_1,\ldots,\mathbf{M}_k\in\mathcal{M}_{n\times n}(\kk)$ a nonzero $\kk$-linear combination satisfying:
\[
\mbox{Rank}\left(\sum_{i=1}^ka_i\mathbf{M}_i\right)\leq r.
\]
\end{Def}
The complexity of the MinRank problem in general is clearly bounded by the complexity in the case that the minimum 
rank of any nonzero $\kk$-linear combination is exactly $r$; thus, we generally assume that the nonzero matrix of 
minimum rank in the span of the $\mathbf{M}_i$ has rank exactly $r$.

One may consider the matrix
\[
\overline{\mathbf{M}}=\sum_{i=1}^kt_i\mathbf{M}_i,
\]
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whose entries are in $\kk[T]=\kk[t_1,\ldots,t_k]$.  The Kipnis-Shamir modeling of this MinRank problem, see 
\cite{KipnisShamir:relin} constructs a basis for the right kernel of $\overline{\mathbf{M}}$ of the form
\[
\mathbf{K}=\left[\begin{matrix}
1 & 0 & \cdots & 0\\
0 & 1 & \cdots & 0\\
\vdots & \vdots & \ddots & 1\\
v_{1,1} & v_{1,2} & \cdots & v_{1,n-r}\\
\vdots & \vdots & \ddots & \vdots\\
v_{r,1} & v_{r,2} & \cdots & v_{r,n-r}\\
\end{matrix}\right]
\]
using $r(n-r)$ new variables $v_{i,j}$.  Then the relation $\overline{\mathbf{M}}\mathbf{K}=\mathbf{0}_{n\times n-
r}$ produces $n(n-r)$ equations in $k+r(n-r)$ variables in the polynomial ring 
$\kk[T,V]=\kk[t_1,\ldots,t_k,v_{1,1},\ldots,v_{r,n-r}]$. Under the condition that for no fixed nonzero $(t_1,\ldots,t_k)$ 
is the rank of $\overline{\mathbf{M}}$ less than $r$, the representation of $\mathbf{K}$ in column echelon form is 
unique, if existant; thus, the solution space is zero dimensional for all nonzero $(t_1,\ldots,t_k)$. We may therefore link 
the under and overdetermination of the MinRank problem to that of the corresponding Kipnis-Shamir modeling. 
consequently, we define a MinRank problem to be \emph{underdetermined} if $k>(n-r)^2$, \emph{well-determined} if 
$k=(n-r)^2$ and \emph{overdetermined} if $k<(n-r)^2$.  

\section{Minors Modeling in the General Case}

One approach to the solution of the MinRank problem is known as minors modeling.  Let $I$ be the ideal in $\kk[T]$ 
generated by the $(r+1)\times (r+1)$ minors of $\overline{\mathbf{M}}$.  Any element of $V(I)\cap\kk^k$ is clearly a 
solution to the MinRank problem over $\kk$.

The number of $(r+1)\times (r+1)$ minors in $\overline{\mathbf{M}}$ is ${n\choose r+1}^2$; however, since every 
minor is homogeneous of degree $r+1$ and there are only ${k+r\choose r+1}$ degree $r+1$ monomials, there can be at 
most 
\[
q=\min\left({k+r\choose r+1},{n\choose r+1}^2\right)
\]
\emph{linearly} independent generators of $I$.  For MinRank instances with $(n-r)^2<q$, these generators are 
algebraically dependent.

In the following, we focus on the overdetermined case $k<(n-r)^2$.  In \cite[Corollary 4]
{DBLP:conf/issac/FaugereDS10}, the Hilbert regularity of $I$ is shown to be bounded by $r(n-r)+1$ via a derivation of 
the Hilbert Series of $\kk[T]/I$ obtained with the aid of a variant of the Fr\"oberg Conjecture.  In many applications it 
has been shown that the regularity is $r+1$ via the same analysis, see 
\cite{DBLP:journals/dcc/BettaleFP13,DCDCSTJV}, for example.

Among these overdetermined instances of MinRank is a special class, in which $q={k+r\choose r+1}$.  We refer to 
such instances as \emph{superdetermined}.  (If we consider the symmetric MinRank problem, in which the matrices are 
all symmetric, then we say that the instance is superdetermined if ${k+r\choose r+1}\leq{n\choose r+1}/2$).  In 
particular, the instances of MinRank arising in cryptography, which we may always consider to be symmetric instances, 
are all superdetermined.  This is due to the fact that the hard instances of multivariate quadratic systems of equations 
have a number of equations proportional to the number of variables whereas a system is superdetermined merely if the 
number of equations $k$ is bounded by a quadratic function of the number of variables $n$, as proven in the following 
proposition.

\begin{Prop}
A MinRank problem with parameters $(n,r,k)$ over the field $\kk$ is superdetermined if $k\leq\frac{(n-r)^2}{r+1}-r$.
\end{Prop}
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\begin{proof}
Let $k\leq\frac{(n-r)^2}{r+1}-r$.  First, we note that
\[
2(r+1)!^2{k+r\choose r+1}=2(r+1)!(k+r)(k+r-1)\cdots k\leq 2(r+1)!(k+r)^{r+1}.
\]
Next, since $2(r+1)!\leq(r+1)^{r+1}$ when $r\geq 1$, we have that
\[
2(r+1)!^2{k+r\choose r+1}\leq\left[(r+1)(k+r)\right]^{r+1}.
\]
Since $k\leq\frac{(n-r)^2}{r+1}-r$, then
\[
(r+1)(k+r)\leq(n-r)^2,
\]
and so
\[
\left[(r+1)(k+r)\right]^{r+1}\leq(n-r)^{2(r+1)}
\]
Since $(n-r)^{2(r+1)}<n^2(n-1)^2\cdots(n-r)^2=(r+1)!^2{n\choose r+1}^2$,
we obtain
\[
2{k+r\choose r+1}<{n\choose r+1}^2.
\]
\end{proof}

A generic superdetermined MinRank instance has a straightforward structure.  We derive the exact Hilbert regularity for 
generic superdetermined systems.

\begin{Thm}
Let $(\mathbf{M}_1,\ldots,\mathbf{M}_k)$ be a generic superdetermined instance of MinRank with parameters 
$(n,r,k)$ over the field $\kk$.  Let $\overline{\mathbf{M}}=\sum_{i=1}^kt_i\mathbf{M}_i\in\mathcal{M}_{n\times 
n}(\kk[T])$.  Let $I$ be the ideal generated by the $r+1\times r+1$ minors of $\overline{\mathbf{M}}$.  Then the 
Hilbert Series of $\kk[T]/I$ is
\[
HS(t)=\sum_{d=0}^r{k+d-1\choose d}t^d.
\]
Consequently, the Hilbert regularity of $I$ is $r+1$.
\end{Thm}
\begin{proof}
Consider $\mathcal{A}=\kk[T]$ as a graded algebra,
\[
\mathcal{A}=\bigoplus_{d\geq 0}\mathcal{A}_d,
\]
graded by total degree.  Since there are ${k+r\choose r+1}$ monomials of total degree $r+1$ and the linear span of the 
minors of a generic superdetermined MinRank instance is ${k+r\choose r+1}$ dimensional, there is a set of 
${k+r\choose r+1}$ minors of $\overline{\mathbf{M}}$ that forms a basis of $\mathcal{A}_{r+1}$.  Thus the 
homogeneous ideal $I$ can be written
\[
I\approx \mathbf{0}\oplus \cdots\oplus \mathbf{0} \oplus \mathcal{A}_{r+1}\oplus\mathcal{A}_{r+2}\oplus\cdots.
\]
Thus, the quotient $\kk[T]/I$ as a graded algebra satisfies
\[
\kk[T]/I\approx \bigoplus_{d=0}^r\mathcal{A}_d.
\]
Since $\text{dim}_{\kk}(\mathcal{A}_d)={k+d-1\choose d}$ for $0\leq d\leq r$--- with the convention that ${0\choose 
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0}=1$--- the Hilbert Series of $\kk[T]/I$ is
\[
HS(t)=\sum_{d=0}^r{k+d-1\choose d}t^d.
\]
Since the Hilbert Series is a polynomial of degree $r$, the Hilbert regularity is $r+1$.
\end{proof}
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